

Computer Navigation in ACL R A Contemporary Review

Joan C Monllau MD, PhD

Hospital del Mar Hospital Universitari Dexeus (ICATME) Barcelona Spain

Overview

Hospital del Mar

What is computer navigation (CN)?

Real-time surgical guidance system using tracking technology

Basic Principles:

- 3D spatial tracking
- Real-time feedback
- Computer-assisted decision making

The Setup

Study trends for CN ACL surgery up to 2015

Fig. 2 Trend of publication concerning navigated ACL surgery (*thick line*). During the early years navigation systems were mainly used to improve tunnel positioning (*dotted line*) from 2007 they have been mainly used for kinematics evaluation (*dashed line*)

	/				-						
Studies that have used navigation system for kinematic evaluation in ACL surgery						Studies that have used navigation system for kinematic evaluation in ACL surgery					
First author	Year	Set-up	Number of Knees	Evaluated parameters	Analysed structures/technique	First author	Year	Set-up	Number of Knees	Evaluated parameters	Analysed structures/technique
Voos et al	2010	Vitro	12	ATT/IE rot	High versus low femoral tunnel	Saiegh et al.	2015	Vitro	14	ATT/PST/IE rot	All
Padi at al	2010	Vitro	12 N/A	ATT/DET	DST and lateral tibial translation	Sena et al.	2015	Vitro	6	ATT/PST/IE rot	Mechanized pivot-shift
Bedi et al.	2010	vitro	N/A	ALI/PSI	PS1 and lateral tiblal translation	Bonanzinga et al.	2015	Vitro	7	ATT/IE rot	PLC
Bedi et al.	2010	Vitro	20	ATT/PST	ASB versus ADB	Imbert et al.	2015	Vivo	32	ATT/PST/IE rot/VV	ACL + LT
Monaco et al.	2010	Vitro	6	ATT/IE rot	ACL and two restraints PLB AMB ALL	Christino et al.	2015	Vivo	30	ATT/IE rot	ACL paediatric
Park et al.	2010	Vivo	70	ATT/IE rot	High versus low femoral tunnel	Usman et al.	2015	Vivo	14	ATT/IE rot	DIT versus SB
Yamamoto et al.	2010	Vivo	150	ATT/IE rot/PST	Clinical grading versus Kinematic values	Porte et al.	2014	Vivo	20	ATT/PST/IE rot	ASB and contralateral intact knee
Nakamae et al.	2010	Vivo	30	ATT/IE rot	ACL remnants	Kopf et al.	2014	Vivo	15	ATT/PST/IE rot/VV	DB/PLB
Musahl et al.	2010	Vitro	12	ATT	Two SB techniques and DB techniques	Imbert et al.	2014	Vivo	32	ATT/PST/IE rot/VV	ACL-deficient and intact knees
Miura et al	2010	Vivo	10	ATT/IE rot	AMB and PLB versus contralateral intact knee	Monaco et al.	2014	Vivo	20	ATT/PST/IE rot	ACL + LT
Soon at al	2000	Vino	40		ASD versus ADD	Zaffagnini et al.	2014	Vivo	26	ATT/PST/IE rot	ADB versus NADB
Seon et al.	2009	VIVO	40	AI I/IE rot	ASB versus ADB	Lopomo et al.	2014	Vivo	40	ATT/ACC	Pre-op and post-op status
Pearl et al.	2009	N/A	N/A	ATT/PST	PST in ACL-deficient knee	Komzák et al.	2013	Vitro	30	ATT/IE rot	PLB and AMB
Lopomo et al.	2009	Vivo	60	ATT	CAS reliability	Signorelli et al.	2013	Vivo	100	ATT/PST/IE rot/VV	Pre-op and post-op status
Monaco et al.	2009	Vivo	30	ATT	Validation KT 1000	Sena et Al	2013	Vitro	6	ATT/IE rot vel.	ITB versus TT versus AE
Kanaya et al.	2009	Vivo	26	ATT/IE rot	Oblique ASB versus ADB	Verhelt et al.	2012	N/A	N/A	ATT/IE rot	SB versus DB
Brophy at al	2000	Vitro	5	ATT/IE rot	Oblique versus central SP	Lim et al.	2012	Vitro	7	ATT/IE rot	ASB versus NASB
Biophy et al.	2009	VILLO	5	ATTINE IO		Nakase et al.	2012	Vivo	50	ATT/IE rot	ACL remnants
Song et al.	2009	Vivo	85	AI 1/IE rot	Stable versus unstable ACL knee	Komzák et al.	2012	Vivo	60	AIT/IE rot	ASB and ADB (PL and AM)
Musahl et al.	2009	Vitro	12	ATT/IE rot	Mechanized pivot-shift	Ettinger et al.	2012	Vitro	10	AIT/IE rot	DB
HO et al.	2009	Vitro	16	ATT/IE rot	ASB versus ADB	Dawson et al.	2012	Vitro	26	ATT	Pivot versus Lachman test
Song et al.	2009	Vivo	40	ATT/IE rot	ASB versus ADB	Lee et al. Van der Brachtet al	2012	Vitro	42	ATT/IE rot	L ateral tibial tunnel in Rev ACI
Ferreti et al.	2009	Vivo	10	ATT/IE rot	ADB (PL and AM bundle)	Lee et al.	2012	Vivo	42	ATT/IE rot	ASB versus ADB
Ishibashi et al.	2009	Vivo	90	PST	PST and DB	Ohkawa et al.	2012	Vivo	125	ATT/IE rot	CAS and clinical outcomes
Steiner et al.	2009	Vitro	20	ATT/IE rot	Independent versus trans-tibial tunnel	Voos et al.	2011	Vitro	11	ATT/PST	Effect of Tibial Slope
Jenny et al	2009	Vitro	N/A	ATT	CAS versus STRESS RX	Koga et al.	2011	Vitro	11	ATT/IE rot	Effect of graft angles fixation
Zoffoonini et el	2009	Vitro	6		Effect of turnel position	Citak et al.	2011	Vitro	6	ATT/IE rot	Valgus force in the PST
Zanagnini et al.	2008	VIIIO	0	AT I/IE FOL	Effect of tunnel position	Cross et al.	2011	Vitro	12	ATT/PST	AM SB versus CTR SB
Lane et al.	2008	Vivo	12	AIT/IE rot/ACC/p angle	In vivo analysis of PST	Plaweski et al.	2011	Vivo	46	ATT/IE rot/PST	ASB versus ADB
Ishibashi et al.	2008	N/A	N/A	N/A	SB versus DB	Monaco et al.	2011	Vitro	10	ATT/IE rot	ACL + LT
Brophy et al.	2008	Vitro	5	ATT/IE rot	Intact ACL versus SB reconstruction	Maeda et al.	2011	Vivo	83	ATT/IE rot	ACL remnants
Ishibashi et al.	2008	Vivo	80	N/A	ASB versus ADB	Petrigliano et al.	2011	Vitro	10	PST	ACL and menisectomy
Martelli et al.	2007	Vivo	80	ATT/IE rot/VV	CAS for kinematic assessment	Seon et al.	2011	Vivo	62	ATT/IE rot	High versus low femoral tunnel
Robinson et al.	2007	Vivo	21	ATT/PST	PL and AM bundles	Musahl et al.	2011	Vitro	5	ATT/PST	ASB versus ADB with meniscal lesion
Steckel et al.	2007	Vitro	5	ATT/IE rot	Intact ACL versus SB/DB reconstruction	Plaweski et al.	2011	Vivo	63	ATT/IE rot/PST	ASB versus ADB
Ferreti et al.	2007	Vivo	20	ATT/IE rot	SB versus DB	Colombet et al.	2011	Vivo	20	ATT/IE rot/PST	ACL + LT
Monaco et al	2007	Vivo	20	ATT/IE rot	ACL + LT versus ADB	Bedi et al.	2011	Vitro	20	ATT/PST	Effect of tunnel position
Mortelli et al	2007	Vivo	79	ATT/IE rot/V/V	CAS for kinematic assessment	Plaweski et al.	2011	Vivo	03	ATT/IE rot/PST	ASB versus ADB $ACL + LT$
Wandoff at al	2007	Vivo	79 N/A	ATT/IE rot	CAS for Kinematic assessment	Bignozzi et al.	2011	Vivo	18	ATT/PST	ADB
Kendori et al.	2007	vitro	IN/A	AT I/IE TOU	CAS versus K11000 and goniometer	Lopomo et al.	2010	Vivo	18	ATT/PST	PST decomposition
Colombet et al.	2007	Vitro	4	ATT/IE rot	Unstable, AMB and PLB	Hofbauer et al.	2010	Vivo	55	ATT/IE rot	ASB versus ADB
Martelli et al.	2005	Vitro	3	ATT/IE rot/VV	New protocol for kinematic assessment	Musahl et al.	2010	Vitro	16	ATT/PST	ACL and menisectomy
Ishibashi et al.	2005	Vivo	32	ATT/IE rot	ADB (PLB and AMB)	Lombach et al.	2010	Vitro	20	IE rot	PL and AM bundles

Hospital del Mar

Navigation system types

- L. Optical tracking systems. This system uses infrared cameras and transmitters with reflective markers attached to the femur and tibia to register the precise location of the instruments in three-dimensional (3D) space.
 - Infrared camera technology
 - Reflective marker tracking
- 2. Image-based systems. Require anatomical reference data obtained from preop CT/MRI or intraoperative fluoroscopy imaging. Image-free systems require no preoperative data, as they are able to acquire anatomical landmark and knee kinematics information

Key Applications

Tunnel Positioning

Kinematic Evaluation

Hospital del Mar

Anatomical Accuracy:

- Precise tunnel placement within 1mm
- 3D visualization of optimal positions
- Real-time angle verification

Clinical Benefits:

- 82% improvement in tunnel placement accuracy
- Reduced risk of tunnel misplacement
- Better outcomes in complex cases

Tunnel Positioning

Tunnel Positioning

Sati et al., Operat Tech Orthop 2000

<u>Without CN</u>

6 surgeons great variation

With CN

same surgeons less variation

Tunnel Positioning

<u>Selective ACL R</u>

Preserving remnants → challenging situation

- Femoral side
- Graft inside the footprint
- Dimensions of the graft / notch

Hospital del Mar

Tunnel Positioning

<u>Revision ACL R</u>

Finding the right spot → challenging situation

- Bone defects
- Primary tunnel malposition

Tunnel Positioning

<u>Double bundle ACL R</u>

Finding the right spot → challenging situation

- Accuracy when drilling two tunnels is key

Intraoperative Assessment

- Real-time laxity measurement
- Multi-planar stability testing
- Quantitative data collection

Measurement Capabilities

- Anterior-posterior translation
- Rotational stability
- Varus-valgus alignment

Clinical Applications in the scientific field

- Surgical technique comparison
- Immediate outcome verification
- Research protocol standardization

Kinematic Evaluation

Clinical applications Surgical Technique Comparison

ACL R +/- LET

Colombet P et al. Knee laxity control in ACL Rev... AJSM 2011;39:1248-54

✓ 20 failures of ACL R ✓ Navigated Hamstring ACLR Revision Addition or not of LET

- Similar anterior tibial translation
- < internal tibial rotation at 90° Flex

in 19-Munder 5-September 2011

Springer OFFICIAL JOU

Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-016-4356-y

KNEE

Current use of navigation system in ACL surgery: a historical review

S. Zaffagnini^{1,2,3,4} · F. Urrizola⁵ · C. Signorelli¹ · A. Grassi^{1,3,4} · T. Roberti Di Sarsina^{1,3} · G. A. Lucidi¹ · G. M. Marcheggiani Muccioli^{1,2,3,4} · T. Bonanzinga^{1,2,3} · M. Marcacci^{1,2,3}

"Currently, NS are considered the **gold standard for laxity quantification & validation** of new non-invasive devices for clinical practice."

"Also useful for the measurement of knee laxity and kinematics of pre- and post-operative surgery, thus allowing a precise comparison of different techniques."

Limitations

- Increased expense of ACLR
- Additional surgical time
- → NOT MITIGATED BY BETTER CLINICAL OUTCOMES

*These factors have limited the use of navigation systems to research-related cases

State of the Art Review

Navigation in anterior cruciate ligament reconstruction: State of the art

Francisco Figueroa ^{a, b, *}, David Figueroa ^a, Rodrigo Guiloff ^{a, b}, Sven Putnis ^c, Brett Fritsch ^d, Minerva Itriago ^a

- ^a Clinica Alemana-Universidad del Desarrollo, Av Vitacura 5951, Vitacura, Santiago, 7650568, Chile
 ^b Hospital Sotero del Rio, Avenida Concha y Toro 3459, Puente Alto, Santiago, 8207257, Chile
- ^c Southmead Hospital, Southmead Rd, Bristol, BS10 5NB, UK
- ^d Sydney Orthopaedic Research Institute, The Gallery, Level 1/445 Victoria Ave, Chatswood, NSW, 2067, Australia

Hospital del Mar

Hardware Challenges

- Additional incision requirements
- Reference frame placement
- Line-of-sight issues

Radiation Considerations

- Exposure levels in image-based systems
- Protection protocols

Technical Complexity

- Multiple step verification
- System calibration requirements
- Potential error sources

Technical Limitations

Time and Efficiency

- Setup time: **15-20 minutes** additional
- Learning curve: 20-30 cases

Cost Analysis

- Initial investment: **USD 100,000-150,000**
- Per-case costs
- Maintenance requirements

Clinical Evidence

- Current research findings
- Outcome comparisons
- Cost-benefit analysis

Practical Limitations

Rehabilitation Applications

- Objective progress tracking
- Customized protocol development
- Patient-specific modifications

Return-to-Sports Assessment

- Quantitative benchmarks
- Risk assessment tools
- Performance metrics

Prevention Strategies

- Movement pattern analysis
- Risk factor identification
- Predictive modeling

Clinical Future Perspectives

Emerging Technologies

- Artificial Intelligence integration
- Machine learning algorithms
- Augmented reality applications

System Improvements

- Miniaturization of hardware
- Wireless technology integration
- Enhanced user interfaces

Integration Possibilities

- EMR connectivity
- Remote monitoring capabilities
- Patient engagement tools

Technological Future Perspectives

Current Status:

Proven benefits in accuracy Remaining challenges Cost-effectiveness considerations

Future Outlook:

Technology trends Clinical application expansion Research directions

Key Takeaways:

Role in modern ACL surgery Best practice recommendations Implementation strategies

Conclusion

22nd ESSKA CONGRESS

ESSKA

ICATME

Join Us in Prague 20th - 22nd May 2026 esska.org

Parc de Salut

MAR

Hospital del Mar

Jmonllau@psmar.cat

